

QUINOVIC ACID GLYCOSIDES FROM *GUETTARDA PLATYPODA*

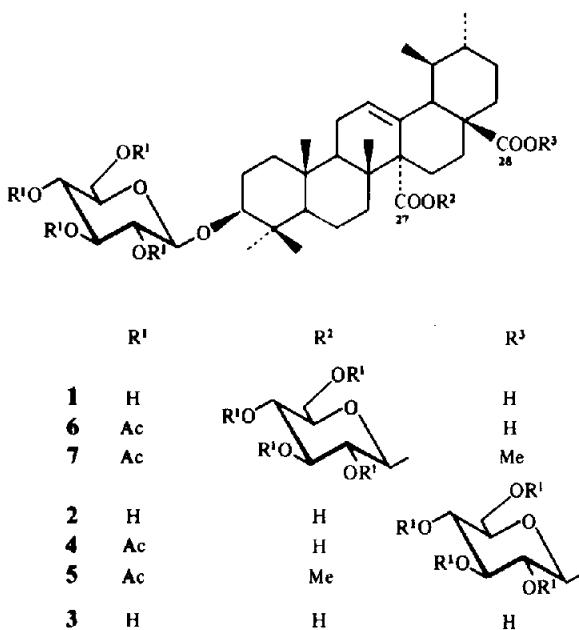
RITA AQUINO, FRANCESCO DE SIMONE, COSIMO PIZZA, RICCARDO CERRI* and JOSÉ F. DE MELLO†

Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli, Via L. Rodinò 22, 80138 Napoli, Italy;

*Istituto di Analitica Farmaceutica, Università degli Studi di Sassari, Via F. Muroni 23, 07100 Sassari, Italy; †Instituto dos Antibioticos, Universidade Federal de Pernambuco, 50000 Recife, Brazil

(Revised received 30 September 1987)

Key Word Index *Guettarda platypoda*; Rubiaceae; glucopyranosyl esters of quinovic acid.


Abstract—A new triterpene glycoside, quinovic acid-3 β -O- β -D-glucopyranosyl-(27 \rightarrow 1)- β -D-glucopyranosyl ester, and two known glycosides, quinovic acid-3 β -O- β -D-glucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester and quinovic acid-3 β -O- β -D-glucopyranoside, were isolated from the roots of *Guettarda platypoda*. Their structures were elucidated by chemical and spectral analysis of the non-derivatized glycosides.

INTRODUCTION

Guettarda platypoda DC., a plant used in folk-medicine as a febrifuge, has recently been shown to contain the iridoids, morronoside and sweroside, and the triterpenoids quinovic acid and its 3-O-fucoside [1, 2]. These are the only reported phytochemical investigations on this species. We have re-examined the methanolic extract of the roots and obtained a new triterpene glycoside (**1**) and two known glycosides (**2** and **3**).

RESULTS AND DISCUSSION

The methanol extract of the roots of *G. platypoda* was chromatographed on a Sephadex LH-20 column and the glycoside containing fractions were further purified by DCCC (droplet counter-current chromatography) and HPLC to obtain the glycosides (**1**–**3**).

The glycoside **1** is a new natural compound; the glycosides **2** and **3** were isolated previously from *Guettarda angelica* [3] but the isolation and spectral analysis were reported only for the peracetyl methyl ester derivatives.

Acid methanolysis yielded methyl glucosides from **1**, **2** and **3** which were analysed by GLC. The molecular formulae $C_{42}H_{66}O_{15}$ for **1** and **2** and $C_{36}H_{56}O_{10}$ for **3** were determined by DEPT ^{13}C NMR studies (Table 1) and FAB mass spectral (Table 2) analysis in the negative ion mode. The FAB mass spectra of **1** and **2** gave the same fragmentation patterns and showed a quasi-molecular ion at m/z 809 [$M - H$]⁺ and two peaks at m/z 647 and 631 which were interpreted as the cleavage of a glucose moiety with and without the glycosidic oxygen. The facile decarboxylation from the m/z 647 and 631 fragments led to the peaks at m/z 603 and 587. Other fragments were observed at m/z 441 and 425 corresponding to the loss of a further glucose unit. The FAB mass spectrum of **3** gave ion species at m/z 647 [$M - H$]⁺ (quasi-molecular ion) and 603 [$(M - H) - COO$]. The m/z 485 peak (aglycone ion) corresponded to the loss of a glucose unit from the m/z 647 in, whereas the peaks at m/z 441 and 425 corresponded to the loss of a glucose unit with and without the glycosidic oxygen from the fragment at m/z 603. The aglycone (molecular formula $C_{30}H_{46}O_5$) for the glycosides (**1**–**3**) was identified as quinovic acid on the basis of 1H (Table 3), ^{13}C and DEPT ^{13}C NMR (Table 1) and FAB mass spectral (Table 3) data.

The β -D-pyranosyl form of glucose in compounds **1**–**3** was deduced from the δ and J values of the anomeric protons and carbons (see Tables 1 and 3) [4, 5].

The presence of a β -glucosidic unit linked at the aglycone with an ether bond in compounds (**1**–**3**) was suggested by the 1H NMR (δ 4.35, 1H, *d*, J = 7.5 Hz, H-1') and by the ^{13}C NMR (δ 106.6, C-1') anomeric signals [4, 5]. The presence in **1** and **2** of a further β -glucosidic unit linked at a carboxyl group (C-27 or C-28) of the aglycone was consistent with the 1H NMR anomeric signal at δ 5.40 (H-1'', 1H, *d*, J = 7.5 Hz) and in full agreement with the observed carbon resonance of C-1'' at δ 95.8 [4, 6]. The ether glycosidation site was shown to be at C-3 of quinovic acid by the ^{13}C NMR absorptions of C-3 (δ 90.9),

Table 1. ^{13}C NMR spectral data for compounds **1–3**

C	1	2	3	DEPT	1 and 2	3	DEPT
1	40.0	39.8	40.0	CH_2		glucose at C-3	
2	27.1	27.1	27.1	CH_2	G-1'	106.6	106.5
3	90.9	90.9	90.9	CH	G-2'	75.8	75.4
4	40.1	40.1	40.1	C	G-3'	78.6	78.4
5	56.9	56.6	56.8	CH	G-4'	71.9	71.9
6	19.4	19.4	19.4	CH_2	G-5'	77.7	77.6
7	37.9	37.9	37.9	CH_2	G-6'	63.0	63.1
8	40.9	40.7	40.8	C		glucose at C-27 or C-28	
9	48.0*	47.9*	47.9*	CH	G-1''	95.8	CH
10	38.0	37.9	37.9	C	G-2''	74.1	CH
11	24.0	24.1	23.9	CH_2	G-3''	78.4	CH
12	130.7	129.7	130.0	CH	G-4''	71.6	CH
14	133.7	135.0	134.5	C	G-5''	78.4	CH
14	57.8	59.5	59.3	C	G-6''	62.9	CH_2
15	25.9	26.2	26.1	CH_2			
16	26.7	27.1	26.9	CH_2			
17	48.1*	48.3*	48.3*	C			
18	55.5	55.7	55.1	CH			
19	40.3	40.4	40.3	CH			
20	38.3	38.1	38.5	CH			
21	31.2	31.3	31.4	CH_2			
22	37.1	37.3	37.9	CH_2			
23	19.3	19.4	19.2	Me			
24	28.6	28.6	28.6	Me			
25	16.9	16.9	16.9	Me			
26	18.2	18.4	18.2	Me			
27	178.1	179.5	179.5	X			
28	182.0	178.5	182.0	C			
29	17.1	17.1	17.1	Me			
30	21.4	21.3	21.5	Me			

* Under CD_3OD signal.

Table 2. FABMS spectral data for compounds **1–3**

m/z	1 and 2	m/z	3
809	$[\text{M} - \text{H}]^-$	647	$[\text{M} - \text{H}]^-$
647	$[(\text{M} - \text{H}) - 162]^-$	603	$[(\text{M} - \text{H}) - 44]^-$
631	$[(\text{M} - \text{H}) - 178]^-$	485	$[(\text{M} - \text{H}) - 162]^-$
603	$[(\text{M} - \text{H} - 44) - 162]^-$	441	$[(\text{M} - \text{H} - 44) - 162]^-$
587	$[(\text{M} - \text{H} - 44) - 178]^-$	425	$[(\text{M} - \text{H} - 44) - 178]^-$
441	$[(\text{M} - \text{H} - 44) - (2 \times 162)]^-$		
425	$[(\text{M} - \text{H} - 44) - (162 + 178)]^-$		

The mass units lost corresponded to the following fragments: m/z 162, glucose without glycosidic oxygen; 178, glucose with glycosidic oxygen; 44, carboxyl group.

C-2 (27.1) and C-4 (40.1) which were in agreement with a model of oleanolic acid substituted at C-3 in CD_3OD [4].

The glycosyl ester linkage was proposed to be at C-28 in **2** on the basis of the ^{13}C and ^1H NMR spectral data. In compound (**2**) C-12 and C-13 resonated at δ 129.7 and 135.0, respectively. These values were similar to those found in **3** and diagnostic for the presence of an unsubstituted carboxyl group at C-14 in a urs-12-en-27,28-dioic acid model [7]. The C-28 esterified carboxyl group

appeared at δ 178.5, shifted upfield by 3.5 ppm (glycosidation shift) in respect to the C-28 (δ 182.0) in **3**. The C-27 free carboxyl group resonated at δ 179.5 as did the C-27 in **3**, in agreement with the literature data [4]. In addition, in the ^1H NMR spectra the H-12 resonance at δ 5.58 (1H, *m*) was coincident for compounds **2** and **3**.

Compound **2**, on basic hydrolysis, gave **3**. On acetylation it gave the peracetyl derivative (**4**) which upon subsequent treatment with diazomethane gave **5**, identified as quinovic acid-3 β -O-[β -D-glucopyranosyl-(28 \rightarrow 1)-

Table 3. ^1H NMR data for compounds 1–3*

H	1	2	3
Me-23 (3H, s)	0.85	0.85	0.85
Me-26 (3H, s)	0.92	0.89	submerged by Me-29 and -30 signal
Me-29 and -30 6H, d, sharp)	0.96	0.96	0.95
Me-25 (3H, s)	1.00	0.99	0.99
Me-24 (3H, s)	1.04	1.04	1.04
H-1' (1H, d, $J = 7.5$ Hz)	4.35	4.35	4.35
H-1'' (1H, d, $J = 7.5$ Hz)	5.40	5.40	—
H-12 (1H, m)	5.62	5.58	5.58

* Other glucose signals were overlapped in the region 3.00–3.95.

β -D-glucopyranosyl ester] peracetyl methyl ester by literature data [3].

From these chemical and spectral data the structure of compound 3 is shown to be quinovic acid-3 β -O- β -D-glucopyranoside and the structure of 2 is quinovic acid-3 β -O- β -D-glucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester.

Compound 1, as well as compound 2, formed 3 on basic hydrolysis. On acetylation they gave the peracetyl derivative 6 which upon subsequent treatment with diazomethane yielded the peracetyl monomethyl ester derivative 7.

The ^1H and ^{13}C NMR sugar resonances of 1 were superimposable on those of 2. The location of glucose in the ester linkage at C-27 was supported by the spectral differences between 1 and 2. In the ^1H NMR spectra the most significant differences resided in the C-26 methyl group signal (δ 0.92, 3H, s) deshielded by 0.03 ppm, and in the H-12 signal (δ 5.62, 1H, m) deshielded by 0.04 ppm in compound 1 while the remaining aglycone protons showed small or no modifications. Also, the ^{13}C NMR spectrum of 1 showed significant changes if compared with that of 2; C-13 was shifted upfield by 1.3 ppm from 135.0 to 133.7, C-12 was shifted downfield by 1.0 ppm from 129.7 to 130.7, C-14 was shielded by 1.7 ppm (γ -effect) from 59.5 to 57.8. Further small differences were observed for the carbons neighbouring C-14.

The observed chemical shift differences for the olefinic carbons (C-12 and C-13) in compounds 1 and 2 were in agreement with the models quinovic acid and its dimethyl ester derivative, reported in a recent paper [7] and confirmed the presence of a substitution at C-27 in 1.

In addition the glycoside at C-27 in compound 1 shifted the C-27 absorption to higher field while the C-28 absorptions were coincident in the spectra of 1 and 3 (see Table 1).

Further evidence for the C-27 glycosylation in compound 1 was provided by a comparative analysis of the spectra of the peracetyl derivatives 4 and 6 and of the peracetyl monomethyl ester derivatives 5 and 7. The ^1H NMR spectrum of compound 6 (in CDCl_3 , see Experimental) showed the C-26 methyl and H-12 signals shifted downfield when compared with the spectrum of compounds 4, as observed in the proton spectra of compounds 1 and 2.

The ^1H NMR spectra (in CDCl_3) of compounds 5 and 7 showed a signal at δ 3.64 (3H, s) in compound 5 and at

δ 3.63 (3H, s) in 7 due to a -COOMe group while the other proton signals were superimposable demonstrating that in compound 6 the C-28, and in 4 the C-27 carboxyl group were free.

From these data compound 1 was proven to be quinovic acid-3 β -O- β -D-glucopyranosyl-(27 \rightarrow 1)- β -D-glucopyranosyl ester. This is the first report of a quinovic acid derivative glycosylated at C-27.

EXPERIMENTAL

The FABMS spectra, in negative ion mode, were obtained by dissolving the samples in a glycerol-thyoglycerol matrix and placing them on a copper probe tip prior to bombardment with Ar atoms of energy 2–6 kV.

The DEPT experiments were performed using polarization transfer pulses of 90 and 135°, respectively, to obtain in the first case only CH groups and in the other case positive signals for CH and Me and negative ones for CH_2 groups. Polarization transfer delays were adjusted to an average CH coupling of 135 Hz.

The NMR spectra were obtained CD_3OD for compounds 1–3 and in CDCl_3 for 4–7 at 250 MHz (^1H NMR) and at 69.5 MHz (^{13}C NMR) with TMS as int. standard.

Biological material. Roots of *G. platypoda* were collected at Itamaraca (Recife, Brazil). A voucher specimen of the plant is deposited at the Herbarium of the Instituto dos Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil.

Isolation. The roots of air-dried plant material (0.5 kg) were extracted with MeOH (X3) at room temp to yield 43 g of extract. A portion (3.6 g) of the residue was chromatographed on a Sephadex LH-20 column (80 \times 4 cm, MeOH as eluent). Fractions (6 ml) were collected and analysed by TLC on silica gel in $\text{CHCl}_3\text{--MeOH--H}_2\text{O}$ (40:9:1). Fractions 13–41 (1.2 g) containing the crude glycosidic mixture were further purified by DCCC with $\text{CHCl}_3\text{--MeOH--H}_2\text{O}$ (7:13:8) (ascending mode, the lower phase was the stationary phase, flow 12 ml/hr, 4 ml fractions were collected) to give the unresolved glycosides 1 and 2 in the fractions 38–46 (150 mg) and 3 in the fractions 180–210 (31 mg). Fractionation was achieved by HPLC on a C-18 μ -Bondapak column (30 cm \times 7.8 mm, flow rate 3 ml/min) using $\text{MeOH--H}_2\text{O}$ (13:12) as eluent to yield pure 1 (48 mg) and 2 (25 mg) from the more polar fractions and $\text{MeOH--H}_2\text{O}$ (7:3) to yield pure 3 (12 mg) from the less polar ones.

Compounds 1 and 2 were acetylated as usual to give 4 and 6 respectively, which were then methylated with CH_2N_2 to give 5 and 7, respectively.

Alkaline hydrolysis. Glycosides **1** (20 mg) and **2** (10 mg) in 0.5 M KOH (1 ml) were separately heated at 110° in a stoppered reaction vial for 2 hr. The reaction mixture was adjusted to pH 7 with dil. HCl and then extracted with *n*-BuOH. The organic phase was evaporated to dryness, dissolved in CD₃OD and analysed by ¹H NMR.

Acidic methanolysis. Methanolysis of each glycoside (0.5–1 mg) was achieved as described earlier [8].

Quinovic acid-3 β -O- β -D-9-glucopyranosyl-(27 \rightarrow 1)- β -D-glucopyranosyl ester (1). HPLC retention time 30 min; FAB MS, ¹H NMR and ¹³C NMR: see Tables 1–3; $[\alpha]_D^{25} = +14^\circ$ (MeOH; *c* 1). Alkaline hydrolysis of **1** afforded the glycoside (**3**) identified by comparison of ¹H NMR spectra. Acidic methanolysis of **1** afforded a methyl glucoside ($\times 2$) identified by GLC (SE-30, 20 m, 140°).

Quinovic acid-3 β -O-[β -D-glucopyranosyl-(27 \rightarrow 1)- β -D-glucopyranosyl ester] peracetate (6). ¹H NMR (CDCl₃): δ 0.71, 0.83, 0.87, 0.92 (s, 6-Me), 2.00–2.14 (8 Ac), 3.78–3.90 (m, H-5' and H-5''), 4.00–4.35 (m, H-6' and H-6''), 4.54 (d, *J* = 8 Hz, H-1'), 4.98–5.30 (m, 6H, H-2', 2'', 3', 3'', 4', 4''), 5.60 (d, *J* = 8 Hz, H-1''), 5.72 (m, 1H, H-12).

Quinovic acid-3 β -O-[β -D-glucopyranosyl-(27 \rightarrow 1)- β -D-glucopyranosyl ester] peracetyl monomethyl ester (7). ¹H NMR superimposable on those of compound **5**.

Quinovic acid-3 β -O-D-glucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester (2). HPLC retention time 26 min; FABMS, ¹H NMR and ¹³C NMR: see Tables 1–3 $[\alpha]_D^{25} = +15^\circ$ (MeOH; *c* = 1). Alkaline hydrolysis of **2** gave compound **3** identified by ¹H NMR data. Acidic methanolysis gave methyl glucoside ($\times 2$) identified by GLC (SE-30, 20 m, 140°).

Quinovic acid 3 β -O-[β -D-glucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester] peracetate (4). ¹H NMR (CDCl₃): δ 0.72, 0.83, 0.86, 0.92 (s, 6-Me), 2.00–2.14 (8 Ac), 3.78–3.90 (m, H-5' and H-5''), 4.00–4.35 (m, H-6' and H-6''), 4.54 (d, *J* = 8 Hz, H-1'), 4.95–5.32 (m, 6H, H-2', H-2'', H-3', H-3'', H-4', H-4''), 5.60 (d, *J* = 8 Hz, H-1''), 5.70 (m, 1H, H-12).

Quinovic acid-3 β -O-[β -D-glucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester] peracetylmonomethyl ester (5). Identified by literature data [3].

Quinovic acid-3 β -O- β -D-glucopyranoside (3). HPLC retention time 16 min; FABMS, ¹H and ¹³C NMR: see Tables 1–3; $[\alpha]_D^{25} = +55^\circ$ (MeOH; *c* 1).

REFERENCES

1. Bhattacharyya, J. and de Almeida, M. Z. (1985) *J. Nat. Prod.* **48**, 148.
2. Ferrari, F., Messana, I., Botta, B. and De Mello, J. F. (1986) *J. Nat. Prod.* **49**, 1150.
3. Matos, M. E. O., Sousa, M. P., Machado, M. I. L. and Braz Filho, R. (1986) *Phytochemistry* **25**, 1419.
4. Pizza, C., De Tommasi, N. (1987) *J. Nat. Prod.* **50**, 784.
5. Bruno, I., Minale, L., Pizza, C., Zollo, F., Riccio, R. and Mellon, F. M. (1984) *J. Chem. Soc. Perkin. Trans I* 1875.
6. Gafner, F., Msonthi, J. D. and Hostettmann, K. (1985) *Helv. Chim. Acta* **68**, 555.
7. Miana Ghulam, A. and Al-Hazimi Hassan, M. G. (1987) *Phytochemistry* **26**, 225.
8. Aquino, R., Behar, I., De Simone, F., D'Agostino, M. and Pizza, C. (1986) *J. Nat. Prod.* **49**, 1096.